# Evaluation of Fodder Cowpea Genotypes for Tolerance to Semilooper (*Plusia nigrisigna* Wlk.)

## S Roy\*, G Sahay, UP Singh and R Bano

Crop Improvement Division, Indian Grassland & Fodder Research Institute, Jhansi-284003, India

One hundred and sixty two accessions of fodder cowpea were screened against semilooper (*Plusia nigrisigna* Wlk.) under natural infestation conditions for four consecutive years. The mean incidence of semilooper ranged from 2.14-4.57% in promising genotypes EC24102-1 (2.14%), IL-1063 (3.89%), IL-05-08 (3.99%) and EC240884 (4.57%) as compared to 14.91-24.74% in the check lines. The entry EC24102-1 may be used as a donor for resistant breeding programmes.

Key Words: Cowpea, Pest tolerance, Semilooper

#### Introduction

Cowpea [Vigna unguiculata (L.) Walp.] as a warm season annual leguminous fodder crop is mainly grown in Northern and Central India. It has a great potential for sustainable agriculture in marginal lands and semi arid regions of the country and is now rapidly spreading out to the entire country, because a number of new and better varieties have been released at national/zonal levels. The green cowpea fodder is rich in protein and forms an excellent mixture with maize, jowar, bajra and teosinte etc. considered as balance diet for animals for higher milk and meat production.

Cowpea is attacked by many insect-pests which are the principal limiting factor for its productivity throughout the country. The losses in green fodder yield were estimated to the tune of 30%. In Central India, the crop is severely damaged by the defoliator insects mainly, flea beetle (*Pagaria signata* Motsch), semilooper (*Plusia nigrisigna* Wlk.), tobacco caterpillar (*Spodoptera litura* F.) and various species of grasshoppers (*Hieroglyphus nigrorepletus* Bol., *Cantontopes pinguis* Stol., *Oedalius abruptus* Thun., *Acridida exaltata*, *Chrotogonus tachypterus* Blanch., *Atractomorpha crenulata* Fabr.). Among all these insects, maximum losses were caused by the semiloopers (Saxena et al., 2002).

At present, the strategy is to develop pest and disease resistant varieties through breeding programmes (Hall *et al.*, 2003). Therefore, it is necessary to screen and identify insect-pest resistant genotypes, which could perform more or less uniformly under different environmental conditions (Graham *et al.*, 2003). Such genotypes are very useful for commercial fodder production.

The basic information on this important forage legume crop is meager. In view of this, the present investigation was envisaged to screen the forage cowpea genotypes against semilooper, which may be of great importance to initiate an effective crop improvement programme.

### Materials and Methods

One hundred and sixty two accessions both exotic and indigenous were screened under natural infestation conditions for four years (2004-2007) in monsoon season against semilooper (*P. nigrisigna* Wlk.) at Central Research Farm of Indian Grasslands and Fodder Research Institute, Jhansi.

The accessions were kept unsprayed during the experiment. The materials were planted in Augmented Design with four control varieties, *viz.*, Bundel lobia 1 (BL-1), Bundel lobia 2 (BL-2), UPC 5286 and local control (IGFRI 95-1). Two rows (3 m length) were assigned for each entry. Row to row distance was 60 cm, while distance between the entries was 100 cm. Out of 162 entries tested during 2004, 2005 and 2006, ten entries were selected and planted in replicated trial during *kharif* 2007.

Assessment of per cent leaf area damage was calculated using graph paper method. Ten central leaflets of fully opened leaf (third from top) from ten randomly selected plants were selected for injury estimation. The observations were taken three times (30, 45 and 60 days after sowing) during every crop season. The damage due to semilooper may be differentiated from the grasshopper damage as the semiloopers eat away the whole leaf area

<sup>\*</sup> Author for Correspondence: E-mail: roysharmilaigfri@gmail.com

including the leaf veins and midribs while the grasshopper feed on the leaf lamina only.

The pest resistance percentage for entries was calculated using a formula derived from Abbott (1925).

Pest (Pest incidence in check – Pest incidence in test entry)
resistance =  $\frac{}{(\%)}$  Pest incidence in check

| Pest Resistance/Susceptibility Rating (PRSR) | Pest Resistance (%) |
|----------------------------------------------|---------------------|
| 1                                            | 100                 |
| 2                                            | 99 to 75            |
| 3                                            | 74 to 50            |
| 4                                            | 49 to 25            |
| 5                                            | 24 to 10            |
| 6                                            | 9 to −10            |
| 7                                            | -11 to $-25$        |
| 8                                            | -26 to $-50$        |
| 9                                            | > -50               |

The pest resistance percentage was then converted to 1 to 9 grading, based on the following scale and the low rating was the criteria of selection for resistant entries.

#### **Results and Discussion**

On the basis of data recorded during the year 2004 and 2005 the pest incidence of semilooper (*P. nigrisigna*) on test entries varied from 1.2 to 75.3 per cent as against 25%-30% in check lines (Table 1).

Seventy one lines were found better than the check. Out of which twenty six accessions were the best with the Pest Resistance/Susceptibility Rating value of 2. While 38 lines were at par with the check for the leaf area damage in the range of 22.5-32.6% (PRSR value of 5 and 6) and 53 lines were susceptible with leaf area damage in the range of 33.2-75.3% (PRSR value of 7, 8 and 9). The most susceptible lines were IL-2000-186, IL-99-38, IL-01-88, IL-05-29 and IL-390 (IL stands for Indigenous Legume).

The twenty six promising entries were selected for further testing in the year 2006. Entries EC24102-1, EC240884, IL-05-08 were found least susceptible (with 1.2-1.5% damage) followed by accessions IL-161-1, IL-05-12, IL-05-13 (damage in the range of 2.4-3.7%).

Observations recorded in 2006 (Table 2) showed that the leaf damage by semiloopers in entries ranged between 2.3-15.0 per cent (PRSR 2-5) compared to 15.8-24.3 per cent (PRSR 6 and 8) against check entries. A total of ten entries, *viz.*, EC24102-1, EC240884, IL-05-08, IL-05-12, IL-05-13, IL-05-15, IL-55-1, IL-161-1, IL-1063, IL-1177-B were found superior with damage ranging between 2.3-4.2 per cent with PRSR value of 2. These entries were promoted for further screening for fourth and final year.

Table 1. Incidence of P. nigrisigna in evaluated gene pool of cowpea (2004 and 2005)

| PRSR | Leaf area (damage %) | Accessions*                                                                                                                                                                                                                                                                                      |
|------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | 1.2-6.5              | EC24102-1, EC48720, EC240564, EC240884, EC240887, EC244236, EC244979, IL-05-08, IL-05-12, IL-05-13, IL-05-14, IL-05-15, IL-156, IL-90, IL-55-1, IL-161-1, IL-178-4, IL-178-8, IL-179, IL-246, IL-380, IL-1063, IL-1177-B, IL-1182, IL-3152-1, IL-3178 (26)                                       |
| 3    | 8.1-14.7             | EC240782, EC241023, IL-05-22, IL-99-98, IL-160-B, IL-177, IL-216-1, IL-370, IL-380-C, IL-867, IL-887, IL-893-1, IL-966, IL-1072-5, IL-2000-188, IL-2000-189, IL-4216, IL-14177-A (18)                                                                                                            |
| 4    | 15.1-22.4            | EC240714, EC240809, EC240840, EC240898, EC244243, EC244310, IL-05-11, IL-05-17, IL-05-28, IL-99-69, IL-99-72, IL-99-73, IL-160-11, IL-181, IL-182, IL-380-A, IL-419-1, IL-449, IL-622, IL-792, IL-892, IL1093, IL-3177, IL-3192, IL-1471, IL-1721, IL-2000-183 (27)                              |
| 5    | 22.5-26.7            | EC120001, EC2440995, EC244217-1, EC244236, IL-05-06, IL-99-65, IL-144-A, IL-160-B, IL-812, IL-1050-3, IL-3138-B, IL-2000-182, IL-2000-187, IL-3155, IL-3168-A, IL-4170, IL-18720-A, BL-1(17+1)                                                                                                   |
| 6    | 27.0-32.6            | EC240999, EC241037, EC244249, IL-05-03, IL-05-04, IL-05-07, IL-05-16, IL-05-18, IL-99-40, IL-160, IL-632, IL-893, IL-966-B, IL-1155-B, IL-1177, IL-3117, IL-3168-A, IL-2000-184, IVM-1, RA-1, RA-2, BL-2, UPC 5286, IGFRI 95-1 (21+3)                                                            |
| 7    | 33.2-37.4            | EC244223-1, EC24077, IL-05-23, IL-05-26, IL-921, IL-160-9,IL-210, IL-362, IL-1170-A (9)                                                                                                                                                                                                          |
| 8    | 38.0-44.2            | EC240740, EC240800, IL-05-05, IL-05-19, IL-15-1, IL-99-2, IL-99-98-1, IL-131, IL-155, IL-372, IL-853, IL-892, IL-1057, IL-1156-1, IL-2000-179 (15)                                                                                                                                               |
| 9    | 45.3-75.3            | EC240650, EC240842, EC244217, IL-01-88, IL-05-09, IL-05-21, IL-05-24, IL-05-25, IL-05-27, IL-05-29, IL-14, IL-99-34, IL-99-38, IL-99-171, IL-132, IL-153-1, IL-155-1, IL-160-A, IL-390, IL-416-4, IL-419-2, IL-886, IL-1014-1, IL-2000-178, IL-2000-180, IL-2000-186, IL-3157, IVM, UPC-870 (29) |

<sup>\*</sup>Figures in parentheses are number of entries+check

IP - 14.139.224.50 on dated 9-Feb-2023

Table 2. Incidence of *P. nigrisigna* in selected entries of cowpea during 2006

| PRSR | Leaf area<br>damage (%) | Accessions*                                                                                             |
|------|-------------------------|---------------------------------------------------------------------------------------------------------|
| 2    | 2.3-4.2                 | EC24102-1, EC240884, IL-05-08, IL-05-12, IL-05-13, IL-05-15, IL-55-1, IL-161-1, IL-1063, IL-1177-B (10) |
| 3    | 4.9-8.5                 | EC48720, EC240564, EC240887, IL-178-4, IL-246, IL-380, IL-3178 (7)                                      |
| 5    | 13.0-15.0               | IL-05-14, IL-156, IL-3152-1, EC244236, EC244979 (5)                                                     |
| 6    | 15.5-18.7               | IL-90, IL-178-8, IL-179, BL-1 (3+1)                                                                     |
| 8    | 21.5-25.7               | IL-1182, Bl-2, UPC5286, IGFRI 95-1 (1+3)                                                                |

<sup>\*</sup> Figures in parentheses are number of entries+check

Table 3. Incidence of *P. nigrisigna* in selected entries of cowpea during 2007

| PRSR | Leaf area<br>damage (%) | Accessions*                                          |
|------|-------------------------|------------------------------------------------------|
| 2    | 1.6-2.4                 | EC24102-1, IL-1063 (2)                               |
| 3    | 2.6-3.6                 | IL-05-08, EC240884 (2)                               |
| 4    | 3.8-4.4                 | IL-05-12, IL-05-13, IL-05-15, IL-161-1, BL-1 (4+1)   |
| 7    | 7.8-21.6                | IL-55-1, IL-1177-B, BL-2, UPC 5286, IGFRI 95-1 (2+3) |

<sup>\*</sup> Figures in parentheses are number of entries+check

Table 4. Incidence of P. nigrisigna in promising entries of cowpea

| Accessions              | Per cent leaf damage in different years |       |       |       |
|-------------------------|-----------------------------------------|-------|-------|-------|
|                         | 2005                                    | 2006  | 2007  | Mean  |
| EC24102-1               | 2.26                                    | 2.36  | 1.80  | 2.14  |
| IL-1063                 | 4.70                                    | 3.23  | 2.23  | 3.89  |
| IL-05-08                | 5.53                                    | 3.63  | 2.80  | 3.99  |
| EC240884                | 6.23                                    | 4.07  | 3.40  | 4.57  |
| Bundel Lobia-1 (C)      | 24.67                                   | 15.80 | 4.27  | 14.91 |
| Bundel Lobia-2 (C)      | 27.07                                   | 22.17 | 18.1  | 22.44 |
| UPC 5286 (C)            | 26.83                                   | 21.97 | 19.33 | 22.71 |
| IGFRI 95-1              | 30.13                                   | 24.30 | 19.80 | 24.74 |
| (Local Control) CD (5%) | 1.43                                    | 0.85  | 0.74  | 0.61  |

During the experimentation year 2007 the damage varied from 1.6–21.6 per cent (Table 3).

The entries EC24102-1 and IL-1063 were found least susceptible (1.6-2.4% damage) followed by IL-05-08 and EC240884 (2.6-3.6% damage). It is evident from the data presented in Table 4 that the mean leaf area damage in the test entry EC24102-1 was 2.14 and IL-1063 with 3.89 per cent damage (PRSR 2) and is statistically superior to the check entries.

J. Plant Genet. Resour. 21(3): 170-173 (2008)

Several fodder cowpea genotypes, *viz.*, IL-118, IL-138, IL-148, EC24426, TUV 2287, TUV 2937 were reported as highly tolerant towards defoliator pests and semilooper damage (Shree Ram *et al.*, 1984; Pandey *et al.*, 1995). Similar trend of findings have also been endorsed by many workers (Mathur, 1995; Prasad *et al.*, 1996; Adebitan, *et al.*, 1997; Anku, *et al.*, 2000; Yadav and Dahiya, 2000; Bhadauria *et al.*, 2001; Kohali, 2002; Singh and Verma, 2002). They reported wide range of diversity and responsiveness in percentage of damage in various genotypes of cowpea caused by semilooper.

This study has identified four genotypes *viz.*, EC24102-1, IL-1063, IL-05-08 and EC240884 which have consistent tolerance towards semilooper damage and thus could be used in breeding programmes as pest resistance donors.

#### Acknowledgements

The authors are grateful for the valued comments of referees towards the improvement of the article.

#### References

Abbott WS (1925) A method of computing the effectiveness of insecticides. J. Econ. Entomol. 18: 265-67.

Adebitan SA, CM Wacka, TT Amos and GN Udom (1997) Performance and resistance to insect pests and diseases in vegetable cowpea. *Tropical Sci.* **37(4):** 214-220.

Anku SY, N Manivannan, S Murugan, P Thanga Velsu and J Ganesan (2000) Variability studies in cowpea. *Legume Res.* **23(4):** 279-280.

Bhadauria NKS, NS Bhadauria and SS Jakhmola (2001) Feeding response of cowpea varieties to Bihar hairy caterpillar, *Spilosoma obliqua* (Walker). *Indian J. Entomol.* **63(4):** 477-478.

Graham PG, JC Rosas, C Estevez de Jensen, E Peralta, B Tlusty, J Acosta Gallegos and PA Arraes Pereira (2003) Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP perspective. *Field Crops Res.* **82:** 179-192.

Hall AE, N Cisse, S Thiaw, HOA Elawad, JD Ehlers, AM Ismail, RL Fery, PA Roberts, LW Kitch, LL Murdock, O Boukar, RD Phillips and KH McWatters (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP perspective. *Field Crops Res.* 82: 103-134.

Kohli KS (2002) Variability for fodder yield and its components in cowpea. *Range Mgmt. & Agroforestry* **23:** 149-151.

Mathur R (1995) Genetic variability and correlative studies in segregating generations of cowpea. *Madras Agri. J.* **82(2):** 150-152.

Pandey KC, N Hassan, RB Bhaskar, ST Ahmed and KS Kohali (1995) Genetic evaluation of cowpea (*Vigna unguiculata* (L.) Walp.) lines for multiple pest resistance. *Indian J. Genet.* **55(2):** 198-203.

Downloaded From IP - 14.139.224.50 on dated 9-Feb-2023

- Prasad DT, NS Umpathy and R Veeranna (1996) Genotypic variation in cowpea (*Vigna unguiculata*) cultivars in relation to insect resistance. *J. Plant Biochem. Biotech.* **5(1):** 47-49.
- Saxena P, KC Pandey, CH Padmavati, NK Shah, SA Faruqui, S Roy, N Hasan, RB Bhaskar and MI Azmi (2002) Forage Plant Protection. IGFRI, Jhansi, 38p.
- Shree Ram, BD Patil and ML Purohit (1984) Cowpea varieties resistant to major insect pests. *Indian J. Agri. Sci.* **54(4):** 307-311.
- Singh MK and JS Verma (2002) Variation and character association for certain quantitative traits in cowpea germplasm. *Forage Res.* **27(4)**: 251-253.
- Yadav GS and B Dahiya (2000) Screening of some mung bean genotypes against major insect-pests and yellow mosaic virus. *Annals Agri. Bio. Res.* **5(1):** 71-73.