Studies Relating to Relationship of Weight-Volume of Various Agricultural Crops

N. K. CHAUDHRY, P. P. KHANNA AND KUSHA VERMA National Bureau of Plant Genetic Resources, New Delhi

Information is evaluated on relationship between weight-volume and number of seeds per kg and per litre and volume per kg of seeds. The results from this investigation would be useful in standardizing the size of container for storing seeds. The information would be useful, particularly for long-term and medium-term storage where standard size of storage space is available. Employing the knowledge of weight and volume, number of seeds in any volume of container of specific crop can be known which will help in planning, distribution, germination test and regeneration strategy of genetic stock. Number of seed samples of priority crops consisting of small, medium and bold size were evaluated. Weight-volume relationship was studied for barley, maize, paddy and wheat among cereals; Italian millet, Japanese millet, finger millet, kodo millet, little millet and proso millet among minor millets; Brassica, sesame, groundnut, safflower and sunflower among oilseeds; blackgram, greengram, cowpea, mothbean, peas, ricebean, adzuki bean, Frenchbean and clusterbean among leguminous crops and buckwheat and sunnhemp among others. A strong positive correlation had been observed for all the crops except finger millet and Italian millet indicating that any increase in weight of seeds is accompanied by corresponding increase in volume of seeds and vice-versa. In case of finger millet, the correlation co-efficient of weight and volume was not significant, whereas in case of Italian millet the correlation co-efficient was significant at 5% level.

A wide range of variability exists with regard to weight and volume of seeds in agri-horticultural crops. Limited information is available on relationship between weight, volume and number of seeds per unit volume. Such information is essential for working out the size of container for long term and medium term storage and for efficient use of storage space. This information would provide an approximate guide to the storage space required for germplasm of important agri-horticultural crops to be conserved at the National Gene Bank at NBPGR, New Delhi.

MATERIALS AND METHODS

Seed samples of crops with small, medium and bold size were evaluated. The crops taken up for study were barley, maize, paddy and wheat among cereals;

Italian millet, Japanese millet, finger millet, kodo millet, little millet and proso millet among minor millets; Brassicae, sesame, groundnut, safflower and sunflower among oilseeds; blackgram, greengram, cowpea, mothbean, peas, ricebean, adzuki bean, Frenchbean and clusterbean among leguminous crops and among others sunnhemp and buckwheat. The seeds were randomly selected from seed lots for weight and volume determination. Weight and volume were recorded for 1000 seeds in Brassicae and sesame, 500 seeds in Japanese millet, Italian millet, proso millet and little millet and 100 seeds in all other crops except groundnut in which 50 seeds were taken. These seeds were weighed with the help of a semi-micro electronic pan balance. From weight and volume of seeds, number of seeds per kg and per litre and volume per kg seeds were calculated using following formulae:

No, of seeds per kg =
$$\frac{100,000}{g} \times CF$$

No. of seeds per litre =
$$\frac{100,000}{v} \times CF$$

Volume per kg seeds =
$$\frac{v}{g} \times 1000$$

where

$$CF = \frac{N}{100},$$

g = weight of 100 seeds (grams),

 $v = \text{Volume of } 100 \text{ seeds (cm}^3), \text{ and }$

N = Number of seeds per sample.

RESULTS AND DISCUSSION

Weight-volume relationship

A strong positive correlation was observed between the weight and volume in all the crops except finger millet and Italian millet indicating that any increase in weight of seeds was accompanied by corresponding increase in volume and viceversa.

Among leguminous crops there was a large variation of the order of 40 per cent in case of Frenchbean.

Volume of seeds

In maize, variation both in seed size and seed weight was considerable. The largest seed was more than four times the size of the smallest seed.

Among millets, proso millet had a high coefficient of variation of the order of 41 per cent.

TABLE 1. NUMBER OF SEEDS PER KG AND PER LITRE AND VOLUME PER KG SEEDS OF IMPORTANT CROPS

Name of Crop		Approximate number of seeds		Approximate volume
		per kg.	per litre	per kg. seeds (cm³)
1	2	3	4	5
Barley (Hordeum vulgare)	Mean Range CV (%)	25960 15674-40989 19,95	15370 9615–25000 21.47	1710.00 1149.00-2857.00 14.85
Maize (Zea mays)	Mean Range CV (%)	3880 2298-9615 43.40	2945 1612-6667 46.93	1442.00 1310.00–1674.00 5.55
Paddy (Oryza sativa)	Mean Range CV (%)	51220 32258-100000 23.39	23730 16667-41667 21.62	2146.00 1391.00-2867.00 11.95
Wheat (Triticum aestivum)	Mean Range CV (%)	35960 20534-81300 33.79	24240 14285-43454 23.22	1467.00 1168.00–1938.00 9.61
Italian millet (Setaria italica)	Mean Range CV (%)	323814 250000-500000 17.22	209265 156200-294117 15.60	1564.13 1111.11-2300.00 16.28
Japanese millet (Echinochloa frumantacea)	Mean Range CV (%)	374041 246305-510204 14.81	227235 142857–294117 15.71	1651.82 1475.41-1925.93 6.00
Finger millet (Eleusine coracana)	Mean Range CV (%)	286871 125000-434783 21,79	151062 111111-263457 16.14	1916.24 955.17–2344.83 19.46
Kodo millet (Paspalum scrobiculatum)	Mean Range CV (%)	228734 140845-312500 11.38	116592 74074–142857 11.12	1964.21 1777.78-2400.00 4.91
Little millet (Panicum sumatrense)	Mean Range CV (%)	385729 250000-555555 15.81	308903 200000-500000 18.70	801.13 695.65–1085.71 10.40
Proso millet (Panicum miliaceum)	Mean Range CV (%)	270129 135135-568182 51.76	202681 94339-357142 48.96	1432.92 505.42-4431.82 41.41
Oleiferous Brassicae	Mean Range CV (%)	335233 217391–526315 16.85	191881 125000-285714 15.53	1752.15 1351:35-2142.86 9.72
Groundnut (<i>Arachis hypogaea</i>)	Mean Range CV (%)	3232 2000-5882 16.34	1909 1250-2941 14.46	1694.09 1437.50-2545.45 7.68
Safflower (Carthamus tinctorius)	Mean Range CV (%)	24721 13888-34246 17.46	11989 6666–16665 15.29	2073.32 1574.10–4629.60 16.84

TABLE 1. (Continued)

(1)		(2)	(3)	(4)
Sunflower (Helianthus annuus)	Mean Range CV (%)	15786 9242-31250 26.59	5610 2777–11111 29.82	2859.21 2343.75-4189.19 11.85
Sesame (Sesamum indicum)	Mean Range CV (%)	341030 147059–584795 21.62	205240 153846-370370 22.24	1675.15 735.29-2115.38 12.63
Blackgram (Vigna mungo)	Mean Range CV (%)	31701 18181-41666 15.13	20444 14285- 27777 13.86	1554.52 1000.00-2205.32 10.37
Greengram (Vigna radiata)	Mean Range CV (%)	34960 16474-54347 21.94	23538 100000-33333 22.84	1494.80 1145.80-2039.80 9.45
Cowpea (Vigna sinensis)	Mean Range CV (%)	11500 6105–26666 32.45	8376 4545–20000 32.72	1380.74 1096.29-1584.91 6.44
Mothbean (Vigna aconitifolia)	Mean Range CV (%)	39767 30303–55555 11.50	31317 23809–50000 13.79	1273.67 1052.60-1388.90 3.83
Peas (Pisum sativum)	Mean Range CV (%)	8414 4347–20000 29.82	5642 2857-12500 25.94	1491.73 941:18-2209.30 13.75
Rice bean (Vigna umbellata)	Mean Range CV (%)	16205 8554-24630 22.62	12336 6060–25881 25.34	1324.20 744.00–1576.58 7.71
Adzukiban (Vigna angularis)	Mean Range CV (%)	8535 4842–15748 32,58	6300 3546–10989 30.58	1355.03 848.03–1495.73 8.04
French bean (Phaseolus vulgaris)	Mean Range CV (%)	4388 1759–8984 37.78	3342 1190–8333 42.20	1344.91 324.97–2296.21 10.72
Clusterbean (Cyamopsis tetragonoloba)	Mean Range CV (%)	29092 24875-38462 7.44	23096 19230–33333 15.18	1275.88 967.74–1615.30 9.71
Sunnhemp (Crotalaria juncea)	Mean Range CV (%)	24578 17331–32573 11.39	17897 13333–22222 10.65	1377.44 1116.63–1837.27 9.49
Buckwheat (Fagopyrum esculentum)	Mean Range CV (%)	50037 3597170125 16.74	28957 18519-500000 19.54	1742.58 1292.13–2180.09 8.54

Except for blackgram, mothbean and clusterbean, the variation in volume of seeds was high. The largest seed was three to four times the size of the smallest seed. In Frenchbean, the largest seed was seven times the size of the smallest seed. In case of Frenchbean, the volume of 100 seeds varied from 12 to 84 cm³ with a coefficient of variation of 41 per cent and the mean volume 35.47 cm³.

Number of seeds per kg and per litre

High variation of the order of 30-40 per cent was observed both in the number of seeds per kg as well as number of seeds per litre in case of cowpea, pea, Frenchbean and adzuki bean. It was also observed that there was comparatively larger variation, both in number of seeds per kg and per litre for bold seeded as compared to the small seeded ones.

Volume per kg seeds

There was little variation between the lowest and the highest values in the oilseed and leguminous crops as well as in sunnhemp and buckwheat.

The percentage of samples falling in low, medium and high ranges were worked out for each of the crops for all the characters. These ranges varied from crop to crop. This could be used to determine the number of seed samples which were likely to fall within a particular range and to have an idea of an approximate/ average seed size of a specific crop.